top of page

NEWS

May 2024  
RESEARCH
RADIATIVE PUMPING IN A STRONGLY COUPLED MICROCAVITY

Strong light-matter interactions have attracted much attention as a means to control the physical/chemical properties of organic semiconducting materials with light-matter hybrids called polaritons. To unveil the processes under strong coupling, studies on the dynamics of polaritons are of particular importance. While highly condensed molecular materials with large dipole density are ideal to achieve strong coupling, the emission properties of such films often become a mixture of monomeric and excimeric components, making the role of excimers unclear. Here, we use amorphous neat films of a new bis(phenylethynyl anthracene) derivative showing only excimer emission and investigate the excited-state dynamics of a series of strongly coupled microcavities, with each cavity being characterised by a different exciton–photon detuning. 

April 2024  
RESEARCH
ARGININE-FUNCTIONAL METHACRYLIC BLOCK COPOLYMER NANOPARTICLES

Extracellular vesicles (EVs) are small, membrane-enclosed vesicles released by cells into the extracellular milieu. They are found in all body fluids and contain a variety of functional cargo including DNA, RNA, proteins, glycoproteins and lipids, able to provoke phenotypic responses in cells, both locally and at distant sites. They are implicated in a wide array of physiological and pathological processes and hence have attracted considerable attention in recent years as potential therapeutic targets, drug delivery vehicles and biomarkers of disease. In this review we summarise the major functions of EVs in health and disease and discuss their translational potential, highlighting opportunities of – and challenges to – capitalising on our rapidly increasing understanding of EV biology for patient benefit.

April 2024  
RESEARCH
STRONG COUPLING IN MOLECULAR SYSTEMS

We provide a simple method that enables readily acquired experimental data to be used to predict whether or not a candidate molecular material may exhibit strong coupling. Specifically, we explore the relationship between the hybrid molecular/photonic (polaritonic) states and the bulk optical response of the molecular material. For a given material, this approach enables a prediction of the maximum extent of strong coupling (vacuum Rabi splitting), irrespective of the nature of the confined light field. We provide formulae for the upper limit of the splitting in terms of the molar absorption coefficient, the attenuation coefficient, the extinction coefficient (imaginary part of the refractive index) and the absorbance. To illustrate this approach, we provide a number of examples, and we also discuss some of the limitations of our approach.

February 2024  
RESEARCH
CONTROLLING ADSORPTION OF DIBLOCK COPOLYMER NANOPARTICLES

Sterically stabilized diblock copolymer nanoparticles with a well-defined spherical morphology and tunable diameter were prepared by RAFT aqueous emulsion polymerization of benzyl methacrylate at 70 °C. The steric stabilizer precursor used for these syntheses contained pendent cis-diol groups, which means that such nanoparticles can react with a suitable aldehyde-functional surface via acetal bond formation. This principle is examined herein by growing an aldehyde-functionalized polymer brush from a planar silicon wafer and studying the extent of nanoparticle adsorption onto this model substrate from aqueous solution at 25 °C using a quartz crystal microbalance (QCM). The adsorbed amount, Γ, depends on both the nanoparticle diameter and the solution pH, with minimal adsorption observed at pH 7 or 10 and substantial adsorption achieved at pH 4. Variable-temperature QCM studies provide strong evidence for chemical adsorption, while scanning electron microscopy images recorded for the nanoparticle-coated brush surface after drying indicate mean surface coverages of up to 62%. This fundamental study extends our understanding of the chemical adsorption of nanoparticles on soft substrates.

January 2024  
STAFF UPDATE
CONGRATULATIONS

At the start of the new year, we would like to take the opportunity to congratulate Prof Jenny Clark on her recent promotion to Professor of Materials Physics within the Department of Physics and Astronomy at The University of Sheffield.

Prof Jenny Clark

Professor Jenny Clark

Department of Physics and Astronomy

University of Sheffield

January 2024  
RESEARCH
MESSAGE IN A BUBBLE

Extracellular vesicles (EVs) are small, membrane-enclosed vesicles released by cells into the extracellular milieu. They are found in all body fluids and contain a variety of functional cargo including DNA, RNA, proteins, glycoproteins and lipids, able to provoke phenotypic responses in cells, both locally and at distant sites. They are implicated in a wide array of physiological and pathological processes and hence have attracted considerable attention in recent years as potential therapeutic targets, drug delivery vehicles and biomarkers of disease. In this review we summarise the major functions of EVs in health and disease and discuss their translational potential, highlighting opportunities of – and challenges to – capitalising on our rapidly increasing understanding of EV biology for patient benefit.

bottom of page