
SOLVING A GRAND CHALLENGE TO DEVELOP DESIGN RULES FOR THE
LONG-RANGE TRANSPORT OF EXCITONS
MOLECULAR PHOTONIC BREADBOARDS
Research project sponsored by an EPSRC Programme Grant
The absorption of light by molecules leads to the formation of molecular excited states, consisting of electron-hole pairs, called excitons. Control of excitons is essential for many new and emerging technologies identified in the Government’s Industrial Strategy as being vital to the economic success of the UK, including solar energy capture, photocatalysis, quantum technologies, and the design of diagnostic devices for personalised medicine.
The goal of our five year, £7.25M programme is to explore an entirely new approach to the design of molecular photonic materials that could extend excitation transfer distances from nm to cm.
Our programme of research is kindly supported by The Engineering and Physical Sciences Research Council (EPSRC).
In a molecular photonic breadboard, synthetic biological antenna complexes (like the tetrahelical proteins shown here) organise pigments in nanoscale regions of space, thus controlling excitonic coupling. Incorporation of a plasmon mode with an associated field (E) enables polaritonic control of energy transfer, and manipulation of ultra-fast non-local couplings (red arrow). Large numbers of such plexcitonic complexes can be assembled to form macroscopically extended films.
PUBLICATIONS
Our research publications reflect our talented team of multidisciplinary experts split across our three partner institutions.
CONTACT US
To solve our grand challenge, we have brought together a multidisciplinary team of experts from across the following three UK research institutions, and lead by The University of Sheffield.
If you would like to find out more, please get in touch.
Project lead: Professor Graham Leggett
Project Manager: Christina Metcalfe
.jpeg)